19 research outputs found

    Hamiltonian Monte Carlo Without Detailed Balance

    Full text link
    We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached that can be accepted. This is achieved using Markov chain transitions that satisfy the fixed point equation, but do not satisfy detailed balance. The resulting algorithm significantly suppresses the random walk behavior and wasted function evaluations that are typically the consequence of update rejection. We demonstrate a greater than factor of two improvement in mixing time on three test problems. We release the source code as Python and MATLAB packages.Comment: Accepted conference submission to ICML 2014 and also featured in a special edition of JMLR. Since updated to include additional literature citation

    Exascale Deep Learning for Climate Analytics

    Full text link
    We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit systems. The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21.0 PF/s and parallel efficiency of 79.0%. DeepLabv3+ scales up to 27360 V100 GPUs with a sustained throughput of 325.8 PF/s and a parallel efficiency of 90.7% in single precision. By taking advantage of the FP16 Tensor Cores, a half-precision version of the DeepLabv3+ network achieves a peak and sustained throughput of 1.13 EF/s and 999.0 PF/s respectively.Comment: 12 pages, 5 tables, 4, figures, Super Computing Conference November 11-16, 2018, Dallas, TX, US

    Novel deep learning methods for track reconstruction

    Full text link
    For the past year, the HEP.TrkX project has been investigating machine learning solutions to LHC particle track reconstruction problems. A variety of models were studied that drew inspiration from computer vision applications and operated on an image-like representation of tracking detector data. While these approaches have shown some promise, image-based methods face challenges in scaling up to realistic HL-LHC data due to high dimensionality and sparsity. In contrast, models that can operate on the spacepoint representation of track measurements ("hits") can exploit the structure of the data to solve tasks efficiently. In this paper we will show two sets of new deep learning models for reconstructing tracks using space-point data arranged as sequences or connected graphs. In the first set of models, Recurrent Neural Networks (RNNs) are used to extrapolate, build, and evaluate track candidates akin to Kalman Filter algorithms. Such models can express their own uncertainty when trained with an appropriate likelihood loss function. The second set of models use Graph Neural Networks (GNNs) for the tasks of hit classification and segment classification. These models read a graph of connected hits and compute features on the nodes and edges. They adaptively learn which hit connections are important and which are spurious. The models are scaleable with simple architecture and relatively few parameters. Results for all models will be presented on ACTS generic detector simulated data.Comment: CTD 2018 proceeding

    Inner Engineering Practices and Advanced 4-day Isha Yoga Retreat Are Associated with Cannabimimetic Effects with Increased Endocannabinoids and Short-Term and Sustained Improvement in Mental Health: A Prospective Observational Study of Meditators

    Get PDF
    Background Anxiety and depression are common in the modern world, and there is growing demand for alternative therapies such as meditation. Meditation can decrease perceived stress and increase general well-being, although the physiological mechanism is not well-characterized. Endocannabinoids (eCBs), lipid mediators associated with enhanced mood and reduced anxiety/depression, have not been previously studied as biomarkers of meditation effects. Our aim was to assess biomarkers (eCBs and brain-derived neurotrophic factor [BDNF]) and psychological parameters after a meditation retreat. Methods This was an observational pilot study of adults before and after the 4-day Isha Yoga Bhava Spandana Program retreat. Participants completed online surveys (before and after retreat, and 1 month later) to assess anxiety, depression, focus, well-being, and happiness through validated psychological scales. Voluntary blood sampling for biomarker studies was done before and within a day after the retreat. The biomarkers anandamide, 2-arachidonoylglycerol (2-AG), 1-arachidonoylglycerol (1-AG), docosatetraenoylethanolamide (DEA), oleoylethanolamide (OLA), and BDNF were evaluated. Primary outcomes were changes in psychological scales, as well as changes in eCBs and BDNF. Results Depression and anxiety scores decreased while focus, happiness, and positive well-being scores increased immediately after retreat from their baseline values (P 70% (P < 0.001). Increases of ≥20% in anandamide, 2-AG, 1-AG, and total AG levels after meditation from the baseline had weak correlations with changes in happiness and well-being. Conclusions A short meditation experience improved focus, happiness, and positive well-being and reduced depression and anxiety in participants for at least 1 month. Participants had increased blood eCBs and BDNF, suggesting a role for these biomarkers in the underlying mechanism of meditation. Meditation is a simple, organic, and effective way to improve well-being and reduce depression and anxiety

    The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking

    Get PDF
    Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problem thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. We will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data

    Isha Yoga Practices and Participation in Samyama Program are Associated with Reduced HbA1C and Systemic Inflammation, Improved Lipid Profile, and Short-Term and Sustained Improvement in Mental Health: A Prospective Observational Study of Meditators

    Get PDF
    Background: Meditation is gaining recognition as a tool to impact health and well-being. Samyama is an 8-day intensive residential meditation experience conducted by Isha Foundation requiring several months of extensive preparation and vegan diet. The health effects of Samyama have not been previously studied. The objective was to assess physical and emotional well-being before and after Samyama participation by evaluating psychological surveys and objective health biomarkers. Methods: This was an observational study of 632 adults before and after the Isha Samyama retreat. All participants were invited to complete surveys. Controls included household significant others. Surveys were completed at baseline (T1), just before Samyama (T2), immediately after Samyama (T3), and 3 months later (T4) to assess anxiety, depression, mindfulness, joy, vitality, and resilience through validated psychometric scales. Voluntary blood sampling for biomarker analysis was done to assess hemoglobin (Hb), HbA1c, lipid profile, and C-reactive protein (CRP). Primary outcomes were changes in psychometric scores, body weight, and blood biomarkers. Results: Depression and anxiety scores decreased from T1 to T3, with the effect most pronounced in participants with baseline depression or anxiety. Scores at T4 remained below baseline for those with pre-existing depression or anxiety. Vitality, resilience, joy, and mindfulness increased from T1 to T3 (sustained at T4). Body weight decreased by 3% from T1 to T3. Triglycerides (TG) were lower from T2 to T3. Participants had lower HbA1c and HDL at T2, and lower CRP at all timepoints compared with controls. Conclusions: Participation in the Isha Samyama program led to multiple benefits. The 2-month preparation reduced anxiety, and participants maintained lower anxiety levels at 3 months post-retreat. Physical health improved over the course of the program as evidenced by weight loss and improved HbA1C and lipid profile. Practices associated with the Samyama preparation phase and the retreat may serve as an effective way to improve physical and mental health. Future studies may examine their use as an alternative therapy in patients with depression and/or anxiety
    corecore